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The evolution of plane switch-on and switch-off shocks in the presence of small 
normal disturbances is examined. (Normal disturbances are those in which the 
perturbed quantities are functions only of time and the distance from the plane 
of the shock wave.) In  the situation under discussion the magnetic diffusivity 
of the ambient gas is much greater than each of the viscous diffusivities and the 
thermal diffusivity . 

It is shown that small normal disturbances can eventually cause appreciable 
changes in the flow pattern around either switch-on or switch-off shocks. Numeri- 
cal computations are carried out for both a specific null switch-on and a specific 
null switch-off shock, in the presence of a known disturbance. The results of each 
of these computations, for large times, are in agreement with analytic, asymptotic 
solutions which are obtained. 

A mechanism is suggested whereby switch-on and switch-off shocks, across 
which an appreciable deflexion of the direction of the magnetic field lines takes 
place, can adjust themselves to small normal disturbances. 

1. Introduction 
The stability of plane, oblique magneto-gasdynamic shocks to small normal 

disturbances has been considered by Akhiezer, Liubarskii & Polovin (1958) and 
Syrovatskii (1959), the ambient gas being treated as ideal and perfectly conduct- 
ing. (Thus the shock was treated as a discontinuity.) They found that switch-on 
and switch-off shocks cannot emit enough small-amplitude plane waves to adjust 
themselves to small normal disturbances. Anderson (1963) also came to the same 
decision. They all concluded that in the presence of small disturbances switch-on 
and switch-off must ‘spontaneously ’ disintegrate into some configuration of 
stable plane waves. 

This paper discusses the above initial value problem for cases in which the 
magnetic diffusivity of the ambient gas is much greater than any other diffusivity. 
(This is a realistic situation.) Consequently, in contrast to previous works, there 
is now a natural length scale (namely the shock thickness) available. Moreover, 
for this problem continuum theory can be valid. 

A Cartesian set of axes Oxyx is employed. The z-axis points downstream, in the 
direction of variation. This is normal to the shock plane and is also referred to as 
the longitudinal direction. The Oy-axis is chosen so that the magnetic field (in 
the undisturbed state) lies in the (z, y)-plane. Oz is termed the transverse direc- 
tion. Furthermore, the origin of co-ordinates 0 is chosen moving (uniformly) 
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within the shock in such a way that V is parallel to B ahead and behind the front 
(if B, + 0, this can always be done; see Shercliff 1960). 

It should be noted that once we start to work out problems in which the region 
of dissipation is not of negligible width, we shall have to define the longitudinal 
position (in the shock) of the origin of co-ordinates. 

Todd (1964) and Todd (1965) cover the same situation for normal and oblique 
magneto-gasdynamic shocks. 

2. Steady-state shock structure 
In  switch-on and switch-off shocks, 

G = pT$ = const., 

F, = p + p V: + (B32p)  = const., 

H = e + ( p / p )  + 4( V i  + V:) = const., 

Fq = 657,- (B,B,lpu) = 0 ,  4 = y, 2, 

~ B , - B , ~ - h d B q / d ~  = 0 ,  q = Y,Z, 

where e is the internal energy of the gas, and the other symbols have their usual 
meaning. 

It follows from (4) and ( 5 )  that V ,  and B, are zero throughout the shock (this 
was assumed in equations (2) and (3)). Equations (4) and (5 ) ,  with q = y, give 

dB, h - + (m-2- 1) GTB~ = 0 ,  
ax 

where 7 = p-l is the specific volume, and m = (V,, J(B:/pp)}. 
Once the equation of state is specified, equations (1) to (4) can be combined to 

give a null curve in the form N(B,, T) = 0. For a reasonably well behaved gas, 
the correct qualitative features of switch-on and switch-off shock are given 
by setting p = a2p, where ‘a,’ is an absolute constant and neglecting the energy 
equation (see figure 1). A more complete discussion is given by Ludford (1959) 
and Anderson (1963). 

There is a gasdynamic discontinuity (CD or C‘D’) in the ‘tail’ of a switch-on 
shock if V, > J{(ap/ap)J upstream, and if V ,  < J{(ap/ap),) downstream. If 
these conditions on V, are satisfied by a switch-off shock then that shock has a 
gasdynamic discontinuity in its ‘nose’ (e.g. CD or C’D’). If these conditions? on 
V,  are not satisfied then the switch-on or switch-off shock under consideration 
does not contain a subshock. The above statements are true whatever assumptions 
we make about the thermodynamic behaviour of the gas. A gasdynamic discontinuity 
or subshock is contained in a very thin region, relative to the overall width of 
the magneto-gasdynamic shock, and it runs on viscous and thermal dissipative 
processes. Its overall effect is exactly that of an ordinary gasdynamic shock’, 
i.e. the Rankine-Hugoniot equations are valid across it. However such a sub- 
shock would consist of a yet thinner region, in which sharp changes in the 

t A switch-on shock always satisfies the former condition. All switch-off shocks satisfy 
the latter condition. 
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FIGURE 1. The null curvea for given 3,. G ,  F,. (The arrows indicate how B, and 7 are 
changing, as we move dowiastrearn through the shock region.) (a) ABCD (or A'B'C'D'J, 
switch-on; D E P  (or D'E'F'), switch-off. ( b )  ABC (or A'BC'),  switch-on; CDEF (or 
C'D'E'F'), switch-off. 

properties of the ion gas take place, surrounded by a broader region over 
which the electron-gas regains thermodynamic equilibrium with the ion gas. For 
the purpose of this paper we can and will treat subshocks as discontinuities 
in the flow, across which mass flux, momentum flux and energy flux are con- 
served. 

3. Discussion of the stability problem 
This is given in Todd (1965), 5i2.1 and 3.1. (However, the left-hand sides of 

equations (33) and (39) of that paper should contain a term ( - 6B2/2p) . )  We shall 
summarize the most important points. 
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If the switch-on (or switch-off) shock contains a gasdynamic discontinuity we 
take our origin fixed a t  this discontinuity. If the shock does not contain a sub- 
shock, we can, for example, locate our axes a t  the point where B, is one half of the 
value in the undisturbed downstream (or upstream) region. 

Switch-on or switch-off shocks, across which an appreciable deflexion in the 
direction of the magnetic field lines takes place, are stable to disturbances in 
B,, V,, p ,  p and V,. The degenerate types are discussed in $5 5 and 7. 

The remainder of this paper is devoted to small normal disturbances in V,  
and B,. The relevant equations and boundary conditions are given in Todd 
(1965), $2.1. The initial disturbance which we shall consider is 

where f,, f 2 ,  g ,  and g2 are absolute constants. 

4. Evolution of the switch-on shock 
In  $ 3  we discussed the longitudinal positioning of our set of Cartesian axes. If 

the switch-on shock under consideration does not contain a subshock, we take 
2: = 0 to be the point where m = 0-99 ... 99. I f  it  does contain a subshock, then 
2 = 0 is the position of the subshock. (It will be remembered from $ 2  that the 
subshock is situated at the downstream end of the switch-on shock.) 

Thus, for the purpose of our analysis, we can take m = 1, for x > 0 ,  and m > 1, 
for x < 0. 

We shall seek asymptotic solutions, valid at large times, of the form 

b = T*Fl(x) +F2(x) + O(T-*) for x ,< 0, ( 8 )  

and b = f2 + b,+ T3 G,(O) + G2(8) + O(T-4) for T3 8 2 0, (9) 

where T = (V;t/A)+m and 8 = x/J(ht). b, is a constant. Note that for 8 > 0, V ,  
and h are constant in value. 

We shall require that, as x -+ - 00, Fl(x) -+ 0 and F2(x) -+ f,. Also, as 8 --f + 00, 

with (8 / JT)  < 1, Gl(8) and G2(8) and their derivatives with respect to 0 all tend 
to zero. 

In seeking asymptotic solutions of the above forms, it is assumed that the 
switch-on shock emits downstream a diffusing, step Alfven wave, across which 
the change in b is b,. The change in V ,  across such a wave is - V ,  b,. 

4.1. The region x < 0 

Equations (1) and (2) of Todd (1965) may be combined to produce the differential 
equation satisfied by b. Terms of order T-*, and higher, are neglected. The coeffi- 
cients of T i  and unity are set equal to zero. In  this manner, we find that 

and 

(A&+% (m-2- 1) F,(X) = 0, I 
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The fact that V,m-, is independent of x has been used in deriving the above pair 
of equations. z is the density ratio across the switch-on shock. 1 < z = (m2)-,. 
Thus 

F,(x) = A ,  @(x), (12) 

where ~ ( x )  = exp(-/u;(1-m-2)cix I , (13) 

and A ,  is a, constant of integration. Also 

where A ,  is a constant. V ,  is given by 

4.2. The region Tt > 8 > 0 

This is the region downstream of the switch-on shock. The differential equation 

where X = (V,x/h). Thus we have that 

(Gf + BG;) T-l - $T-%((2 - 8,) G; + BG; - Gl + 4G: + 48Gi  + 4G.3 + O(T-') = 0, 

where primes denote differentiation with respect to 8. Hence 

G: + 8G; = 0, 

- (Gi + 8GL) = ${ (2 - 02) G; + SGi  - a,}. 
(17) 

(18) and 

Equation (17), together with the conditions on the behaviour of Gl(8), for 
T: 9 8 9 1, gives 

where C, is a constant, and 

d 
dB 

GI( 8) = C, (exp ( - &02) - ,/( 47~) 8 erfc (8/ JS)], (19) 

2 "  

@. 0 
erfc (a) = 1 - 1 e-v'dr]. 

It subsequently follows that 

G,(B) = &8exp ( -  &02) +C,erfc (8/,/2), (20) 

where C2 is a constant. 

V, --f (9, - b,) V, as 8 -+ co (with 8 / J T  < l ) ,  give 
Equations (1) and (2) of Todd (1965), together with the condition that 

(V,/V,) = fg2 - 6,) + el(@ T* + C,{@ exp ( - @32) + ,/(+.c) erfc 18/42)) 
+C2erfc(8/,/2)+O(T-~). (21) 

The constants A,, A,, C,, C,, and br are evaluated by satisfying, to order unity, 
the boundary conditions at x = 0 ,  i.e. terms of order T-(*) and higher are neglected. 
The results obtained are 

br = +{6(2+ ' ) f i - . f i+g , -~ l ) ,  (22) 
A ,  = c,+4{g2-Zg,+fi+&(z+ l)f,}, (23) 

and A ,  = c, = yl(2/7r) (x- l)fi. (24 )  
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It is not surprising that C, is independent of f2, g2 and g,. Disturbances in the 
region x > 0 ( f, and g2) are not propagated towards the shock. Also, according to 
infinite conductivity theory (Akhiezer et al. 1958), a switch-on shock can adjust 
to upstream disturbances in V,  (gl) by emitting its one outgoing Alfv6n wave. 

The constant C, remains indeterminate. It can be found by including higher- 
order terms in the analysis. However, all the interesting features of the flow have 
already been found so we shall not proceed to evaluate C,. If we had used in- 
finite conductivity theory (Akhiezer et al. 1958) to calculate b, for a super- 
Alfvbnic shock and then let ( ~ 9 ) + ~ - +  1, from above, we would have obtained 
equation ( 2 2 ) .  Also if we had used the result of Todd (1965), equation (26) of 
which gives b, for a trans-Alfvknic shock, and let (m2)+, --f 1, from below, we 
should have obtained equation (22). 

5. Evolution of null switch-on shocks 
The upstream region is separated from the downstream region by a gasdynamic 

discontinuity, i.e. this degenerate species of switch-on shock is an ordinary gas- 
dynamic one which has m = 1 on the downstream side. Consequently, the co- 
efficients of the derivatives in equations (10) and (1 1) are constants. 

In  the undisturbed state, B, = 0 on both sides of the shock and disturbances 
in B, and 8 are decoupled from those in V,, p and p. The shock is stable to per- 
turbations in V,, p and p, since it is supersonic upsteam and subsonic downstream. 
Also, for a null switch-on shock there is no specific direction for Oy other than 
that it lies in the plane of the shock wave. The governing equations and boundary 
conditions for small normal disturbances in B, and V ,  are identical with those for 
normal perturbations in B, and V,. Thus we will simply discuss disturbances in 
Bp. and V,, where q can represent y or z. 

The disturbance chosen was of the form 

at t = 0. 
b = (BJB,) = Afconst.) for all x 

V, = 0 for all z 

A shock density ratio (2) of two was chosen and (L,/h+,) was set equal to four. 
We define X = (V,x/h). (See also equation (16).) 

Since the coefficients of the partial derivatives in the governing equations are 
constants, the problem can be solved exactly by using the Laplace transform. 
The inversions of the transform were carried out by numerical computation, 
in the manner described in Todd (1964). The resultant profiles of (b/A) - 1 are 
drawn for several values of T in figure 2. In  figure 3, the value of ( (b /A)  - 1) 
at x = 0 is plotted against TQ. The analysis of $4, with fl = f2 = A and g1 = g, = 0, 
claims t o  give the asymptotic behaviour of b for large values of T. 

Figure 3 shows that the rate of rise of b, at the gasdynamic discontinuity, with 
the square root of time, is becoming linear a t  large values of T. The results of the 
previous section give Cl = (0.787) A for this problem. This appears to agree with 
the computational results. 

For this problem, the analysis of $ 4  predicts that b, = (0-25)A. This agrees 
with that which is ‘observed’. 
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FIGURE 2. Relative increase in transverse field near a null switch-on shock. 
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FIGURE 3. The variation of the relative increase in transverse field. at the gasdynamic 
discontinuity, with the square root of time. (Null switch-on case.) 
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A comparison between the asymptotic profiles obtained analytically (8 4) 
and the computations is given in table 1. A value? of C, (namely, - 2.41A was 
calculated on an empirical basis, from a selection of the computational results. 

\ X - 8  - 4  - 2  - 1  0 1 2 4 8 12 
\ 

T \  
32 0.02 0.28 0.89 1.58 2.79 2.20 2.71 1.01 0.39 0.25 

(0.04) (0.31) (0.84) (1.39) (2.29) (1.73) (1.28) (0.73) (0.32) (0.16) 

50 0.04 0.42 1.25 2.16 3.71 3.06 2.50 1.64 0.68 0.34 
(0.06) (0.46) (1.25) (2.06) (3.40) (2.76) (2.22) (1.41) (0.59) (0.33) 

TABLE 1. Some comparison between the analytic, asymptotic profiles, obtained for large 
times, and the exact shock profiles of the relative transverse field. (The figures corresponding 
to the analytic, asymptotic profiles are shown in parentheses.) 

The discrepancies between the two sets of results in table 1 are of the order 
of the error which is to be expected for the moderate times under consideration. 

6. Evolution of the switch-off shock 
Some switch-off shocks contain gasdynamic discontinuities at the upstream 

end of the region of ohmic dissipation. We would choose x = 0 to coincide with 
the position of the subshock. However, if this gasdynamic discontinuity was 
absent, we would choose x = 0 to be the point at which m = 0.999 ... 9. Thus, for 
the purpose of our analysis, we may take m = 1 for x < 0, m < 1 for x > 0. 

We shall seek asymptotic solutions, valid at large times, of the form 

b =ti+ T*G,(B) + GJ0) + O(T-J) ,  T: % - 0 2 0,  

where T = t ( E / 4 + m  and 0 = ( 4 J ( t L ) } / J 4 ? ,  

(25) 

Q = (V:/A)+,,/( V:/h)-m. GI, dG,/d0, G,, dG,/dB, etc., all tend to zero as 0 +- 00, 
with(-@/JT) < 1. 

We shall assume that the switch-off shock emits downstream a diffusing, step 
Alfvh wave, across which the change in b is b,. The change inV, across such awave 
is ( -  ,Lzb,u+,). 

The analysis of this section is completely analogous to that of 54. Thus we 
shall simply present the results. 

b = TfrF,(z) -I- F,(x) + O(T-4) for x 2 0. (26) 

6.1. The region x 2 0 
For this region 

where A ,  and A ,  are constants of integration, and 

V ,  = (g2-zSb,)u+,+~m-2(b-f,- b,)+O(T-&). (28) 

t See remarks at the end of $4. 
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6.2. The region T* -19 2 0 
For this region 

and 
Gl(6) = C,[exp ( - gQez) + J(-k&) 0 erfc { - f9&$&)}1, (29) 

Gz(@ = Cz erfc { - eJ(g&)} + - SQ exp ( - &&W + J($rr&) 

x erfc { - 44+Q)}I, (30) 

-&[Wexp( -+Q19z)+3J(~n&)erfc{-OBJ(&?)}]+O(T-*). (31) 

Once again the constants A,, A,, C,, C2 and b,. are evaluated by satisfying the 
boundary conditions at x = 0 to order unity, i.e. terms of order Td and higher 
are neglected. It is found that 

(Em = 91 + Tg GAB) + Q2 erfc { - M&)} 

and (34) 

C, remains an unknown constant. It could be evaluated by including higher-order 
terms in the analysis. 

If we had used infinite-conductivity theory (Akhiezer et al. 1958) to calculate 
b, for a sub-Alfvhic shock and then let (m2)-, -+ 1 from below we could obtain 
equation (32). Also, if we take the result of Todd (1965), which gives b, for 
a trans-Alfvhic shock, and let (m2)-, -+ 1, from above, we would once again 
obtain equation (32). It is not surprising that C, (the rate of rise of (Bz/Bz), a t  
x = 0, with T4) depends only on (b, + b,). According to infinite conductivity 
theory (Akhiezer et al. 1958) a switch-off shock can only adjust to those dis- 
turbances for which (b)aowanstream equals zero, after the passage of the one out- 
going Alfv6n wave. (For disturbances in this latter category, the shock would 
simply change to a slightly different switch-off shock.) 

7. Evolution of the null switch-off shocks 
A null switch-off shock is a gasdynamic discontinuity which has m = 1 

on the upstream side. Just as for the null switch-on shock (see beginning of 
$ 5 )  the analysis for disturbances in B, and V ,  can be applied to disturbances in 
B, and V,. Thus we shall treat b = (BJB,) and V,, where q can be y or z. 

The specific disturbance chosen was of the form 

at t = 0, 
b = A(const.) for all x 

v , = O  for all x 

i.e. fl = f, = A and g1 = g, = 0. 

The null switch-off shock under consideration is characterized by x = 2 and 
Q = 1. Once again (see $ 5 )  the coefficients of the partial derivatives in the govern- 
ing equations are constants and the Laplace transform can be used to solve the 
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FIGURE 4. Increase in relative transverse field near a null switch-off shock. 
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FIGURE 5. The variation of the relative increase in transverse field, at the gasdynamic 
discontinuity, with the square root of time. (Null switch-off case.) 

The resultant profiles of { ( b / A )  - 11 are drawn in figure 4, for several values of 
T.  In  figure 5, the value of { ( b / A )  - l} at x = 0 is plotted against T*. The analysis 
of 4 6 with fi = f2 = A ,  g, = g2 = 0, z = 0 and Q = 1, claims to  give the asymptotic 
behaviour of b for large values of T. Figure 5 shows that the rate of rise of b, 
at the gasdynamic discontinuity, with the square root of time, is becoming linear 
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at large values of T. The results of the previous section give this rate of rise as 
(0.467) A. This appears to agree with the computational results. 

The analysis of $ 6  also predicts that b, = (0.172) A. This agrees with that which 
is ‘observed’. 

\x -12  - 8  - 4  - 2  - 1  0 1 2 4 8 
\ 
T \~ 
32 0.04 0.22 0.83 1.44 1.84 2.33 0.92 0.43 0.20 0.17 

(0.04) (0.20) (0-78) (1.36) (1.77) (2.24) (0.94) (0.45) (0.21) (0.17) 

50 0.15 0.49 1.33 2.03 2.47 2.98 1.17 0.52 0.22 0.17 
(0.14) (0.47) (1.28) (1.97) (2.41) (2.91) (1.18) (0.54) (0.22) (0.17) 

TABLE 2. Some comparison between the analytic, asymptotic profiles obtained for large 
times and the exact shock profiles of the relative transverse field. (The figures corre- 
sponding to the analytic, asymptotic profiles are shown in parentheses.) 

A comparison between the asymptotic profiles predicted by the analysis of 
$ 6 and the computations is given in table 2. A value? of C, (namely, - 0.47A) 
was calculated, on an empirical basis, from a selection of the computational 
results. 

The discrepancies between the two sets of results given in table 2 are well 
within that which could be expected for the moderate times under consideration. 

8. A final breakdown configuration 
$5 of Todd (1965) discusses the eventual fate of strong$ switch-on and switch- 

of shocks which are subjected to our type of disturbance. Figures 6 and 7 illustrate 
these proposals for a switch-on case. 

C. K. Chu & R. Taussig (1965, private communication) have carried out 
numerical computations of the whole non-linear development. They find precisely 
what is outlined in Todd (1965). However, a pseudo-viscosity factor is used 
in their finite difference scheme. 

9. Conclusions 
It is clearly shown that, if small disturbances, with a length scale large com- 

pared to the shock thickness, are incident upon a switch-on or switch-off shock, 
large changes in the flow pattern will be created in the vicinity of the original 
shock. In  the discussion of Q 8, the author shows that these changes are consistent 
with having something very close to an Alfvhn simple wave in juxtaposition 
with a shock which is very similar to the original. (The substance of the latter 
sentence does not apply to cases in which only a very small deflexion in the direc- 
tion of the magnetic field lines takes place across the original switch-on switch-off 
shock.) 

t See remarks at  the end of $6. 
$ By this, we mean that an appreciable deflexion in the direction of the magnetic field 

lines takes place across these shocks. 
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FIGURE 7. The profile of (0, B,, B,) in the breakdown configuration. 
m, plane, y=O; m, plane, z=const. 
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